Nueva teoría sobre la naturaleza de los números


Una nueva teoría ha revolucionado la comunidad de los matemáticos. Desarrollado por un equipo de la Universidad de Emory liderado por Ken Ono, el trabajo ofrece por primera vez una fórmula finita que permite calcular las particiones de cualquier número. Este problema, que consiste en determinar cuantas secuencias diferentes de enteros positivos se pueden sumar para formar un numero determinado ha intrigado históricamente a los matemáticos, pero hasta ahora nadie había sido capaz de encontrar este patrón.

Los matemáticos, por lo general lejos de las luces y las cámaras de TV, siguen elaborando teorías que expliquen la naturaleza de los números. Algunos problemas relacionados con sus propiedades se han resistido a la comprensión de los especialistas durante siglos, a pesar del esfuerzo de algunos de los cerebros más poderosos que ha conocido la humanidad. Uno de ellos es el relacionado con “las particiones de los números”, un problema que a pesar de su aparente simplicidad logró derrotar a varios famosos matemáticos. En pocas palabras, las particiones de un número son todas las series de términos que se pueden construir de forma que -sumados- den como resultado el número en cuestión. Un ejemplo puede ayudar a comprender mejor el problema: el número de particiones de 4 es 5, ya que se puede obtener sumando 4+0, 3+1, 2+2, 2+1+1 y 1+1+1+1. Si quieres y tienes algo de tiempo, puedes encontrar las 42 particiones del número 10. Lamentablemente, la cantidad de particiones crece a un ritmo increíble: el número 100, por ejemplo, posee 190.569.292 particiones.

El matemático Ken Ono. (U. de Emory)
El matemático Ken Ono. (U. de Emory)

Las particiones son la base -matemáticamente hablando- para sumar y contar. Muchos especialistas consiguieron pequeños avances en este campo, pero nadie había logrado -hasta ahora- encontrar una fórmula que determinase cuantas particiones tiene un número en particular. Ken Ono, un matemático de la Universidad de Emory, junto a su equipo de investigadores, ha elaborado una nueva teoría que explica todo lo que hay que saber sobre esta área fundamental de las matemáticas. Ono ha descubierto que las particiones de un número se comportan esencialmente como fractales. Esto le ha permitido han desarrollar una teoría matemática que permite “ver” las particiones como una súper estructura infinitamente repetida. El resultado práctico de todo esto es la primera fórmula finita que permite calcular exactamente la cantidad de particiones que posee cualquier número. El trabajo de Ono fue patrocinado por el American Institute of Mathematics (AIM, o Instituto Americano de Matemáticas) y la National Science Foundation (Fundación Nacional de Ciencias).

Ken Ono junto a un colega, en los bosques (U. de Emory)
Ken Ono junto a un colega, en los bosques (U. de Emory)

Nuestro trabajo”, dice Ono, “proporciona ideas completamente nuevas que servirán para resolver este tipo de problemas. Hemos demostrado que las particiones de números son similares a fractales para cada número primo. Nuestro procedimiento resuelve varias conjeturas que habían sido planteadas anteriormente, cambiará la forma en que los matemáticos estudian las particiones.” La comunidad matemática ha reaccionado con entusiasmo ante este trabajo. “Ken Ono ha logrado unos avances absolutamente impresionante en la teoría de particiones”, explica George Andrews, un profesor de la Universidad Estatal de Pennsylvania que ejerce la presidencia de la Sociedad Matemática Americana. “Ha demostrado propiedades asombrosas. Realmente, es un fenómeno”, añade. Como es lógico, Ono también está muy conforme con esta teoría. Y no es para menos: uno de los más geniales matemáticos autodidactas de todos los tiempos, el indio Srinivasa Ramanujan, descubrió en 1919 una forma de estimar la cantidad aproximada de particiones que tenían los números superiores a 200. Lamentablemente, Srinivasa murió en 1920 a los 32 años, antes que pudiese transformar su trabajo en una ecuación concreta.

La partición de números es una alocada secuencia de enteros que rápidamente tiende a un valor infinito”, explica Ono. “Esta provocadora secuencia ha fascinado desde hace mucho tiempo a los matemáticos”, agrega. Ono dedicó muchos meses a resolver este problema, pero la inspiración de tratarlo desde el punto de vista fractal se le ocurrió cuando se encontraba realizando una excursión por las Cataratas Tallulah (Georgia) junto sus colegas. Caminando por el bosque, observó la copa de los árboles y se le ocurrió que lo que estaba haciendo era similar a “andar entre las particiones de números”. Esa extraña asociación de ideas fue la base para resolver el problema. ¿Que te parece?

Arq. Cano Web Developer

No hay comentarios.: